ACTIVE LEARNING

with

 KNOWLEDGE-BASE INDUCTION
 MOHAMED A. ARTEIMI

DAVID LUBINSKY

Wajdi S. Besbas

 Department of Computer Science

School of Computer Science
Department of computer Science

 University of 7th of April-Libya

WITS University
University of 7th of April-Libya

 P.O.Box 81537 Tripoli/Libya

South Africa

 P.O.Box 116418 Zawia,Libya

 Email: arteimi@yahoo.com David@cs.wits.ac.za

Email: act@lttnet.net
Abstract

This paper presents empirical methods for enhancing the accuracy of inductive learning systems. It addresses the problems of: learning propositional production rules in multi-class classification tasks in noisy domains, maintaining continuous learning when confronted with new situation after the initial learning phase is completed, and classifying an object when no rule is satisfied for it.

It is shown that interleaving the learning and performance-evaluation process allows accurate classifications to be made on real-world data sets. The paper presents the system ARIS which implements this approach, and it is shown that the resulting classifications are often more accurate than those made by the non-refined knowledge bases.

The core design decision that lies behind ARIS is that it employs an ordering of the rules according to their weight. A rule’s weight is learned by using Bayes’ theorem to calculate weights for the rule’s conditions and combining them. This model focuses the analyses of the knowledge base and assists the refinement process significantly.

The system is non-interactive, it relies on heuristics to focus the refinement on those experiments that appear to be most consistent with the refinement data set. The design framework of ARIS consists of tabular model for expressing rule weights, and the relationship between refinement cases and the rules satisfied for each case to focus the refinement process. The system has been used to refine knowledge bases created by ARIS itself, as well as to refine knowledge bases created by the RIPPER and C4.5 systems in ten selected domains.

Key words: machine learning; knowledge-base refinement; small embedded hypothesis.

1. INTRODUCTION

The growth in data base technology and computer communication have resulted in the creation of huge, efficient data stores in almost every domain. For example, credit-card transactions, medical images, and large scale sky surveys all are stored in massive and ever growing data bases. These streams of data need to be analysed to extract higher-level information and could be useful for decision making and for understanding the process generating the data. For large systems of this type, we need automated methods that acquire decision-making knowledge.

Humans attempt to understand their environment by using a simplification of this environment (called a model). This model represents events in the environment, and similarities among objects. Similar objects are grouped in classes and rules are constructed to predict the behavior of new objects of such a class. In machine learning, we try to automate this process and construct class descriptions (model) using an iterative search strategy on a library of examples. This is known as inductive learning. The problem with inductive inference is that the inductively generated knowledge (whether created by human or machines) is uncertain since it is based only on a sample of all possible instances.

Two techniques are in wide use. In supervised learning, the classes are defined for the system with examples of each class. In unsupervised learning (or learning from observation and discovery) the system has to discover the classes itself, based on common properties of objects. The paper is restricted to the former approach.

The problem of refining an imperfect (incomplete/incorrect) knowledge base is an important aspect improving the predictive ability of the learning system on unseen cases. Various approaches have appeared in the literature [1,2,3,4]. One weakness with them is that they lack a suitable strategy for subjecting the entire set of test cases to further analysis when a misclassified case is encountered, instead of immediately rushing to fix the misdiagnosed case at hand. A common cause of misclassification behavior is that the selection of the rules for inference is essentially an arbitrary process. This is due to rules being in the order that they are generated. The advantage of ordering the rules according to some importance criterion is that this results in applying fewer transformation operators on the knowledge base.

This paper describes a theoretical approach and its implementation in an inductive refinement system named ARIS, which aims to be a step in the direction of improving inductive concept learning systems. ARIS uses a range of techniques to focus the refinement process on the most critical parts of the faulty knowledge base and to repair it.

2. PROBLEMS ASSOCIATED WITH CURRENT SYSTEMS

The knowledge base plays a key role in the problem solving ability of learning systems, and it is the most powerful component, however, Greiner [5] shows that constructing an efficient knowledge base is NP hard, and the constructed knowledge base is often inconsistent and incomplete and may not perform sufficiently well, regardless of whether the knowledge base is coaxed directly from experts or deceived by analyzing a library of cases. Therefore, it is necessary to update the knowledge base to provide an extended or generalized model that is more effective. This paper is motivated by the following considerations:

· Inductive concept learning algorithms suffer from weaknesses that get them trapped in local maxima, which might be quite far from a globally optimal solution

· Inductive learning systems would be more intelligent in solving problems if endowed with the ability to integrate performance analysis in the learning process. In particular, allowing the learning system to ask whether or not a particular example is already covered by the knowledge base results in a remarkable increase of power. The reason is that this feedback extends the learning capabilities in different directions by generalizing the initial knowledge base to accommodate the uncovered examples correctly, and exclude incorrectly covered examples. This includes generalizing the rule’s cover, adding new rules, deleting superfluous rules, and specializing overly general rules.

· Current learning systems resort to assigning a default class(majority class) to a case to be diagnosed if no rule matches the case’s attribute values. As the number of classes exceeds two, the probability of producing incorrect predictions increases. Hence an alternative technique is required.

3. STRUCTURE OF ARIS SYSTEM

ARIS initially generates a knowledge base using induction on a set of training examples. It then proceeds to test the knowledge base on a separate set of data for refinement purposes called the refinement data set. It is only after this testing, and only if some of the cases in the refinement set are misclassified, that the refinement subsystem is invoked. Finally, the system is tested on a separate testing data set for an evaluation of the refinement process. The refinement subsystem identifies possible errors in the knowledge base, and calls on a library of operators to develop possible refinements guided by a global heuristic. The best refinement is implemented, and the process repeates until no further refinements are possible.

ARIS performs a search through a space of both specialization and generalization operators in an attempt to find a minimal refinement to a knowledge base.

Conceptually, the refinement subsystem has three main phases, two of them are executed for every hypothesis present in the particular knowledge base, while keeping the rules ordered with respect to their weights

Phase1: (Localisation)

During the first phase, all misdiagnosed cases from the refinement set belonging to a particular hypothesis (class) are identified. Each misdiagnosed case receives a weight from the rules satisfied for the case. This indicates the rule overlapping at this point (case) in hypothesis space. The case that has the highest absolute weight among the misdiagnosed cases is selected, because it identifies the strongest rule from the set of erroneous rules (i.e. with highest weight).

Phase 2: (Refinement generation, verification and

 selection)

During this phase, the rule responsible for the misdiagnoses is determined, and all possible refinement operations are tried. Namely, the erroneous rule is specialized, a similar rule reaching the intended class is generalized, and a new rule is created. All the above applicable operations are tried and the knowledge base is tested. The resultant performance is stored. Finally, the refinement operator or group of operators that produce the best performance is chosen. The process is repeated until no further improvement is possible.

Phase 3: (Check for completeness and remove

 superfluous rules)

Finally, the knowledge base is checked for incompleteness, Each case must be covered by at least one rule. If there are cases that are not covered by the existing rules, new rules are created. Moreover, many superfluous rules are removed.

The main components of ARIS are a tree generator, a rule generator, a refinement generator, a judgement module, and an inference engine. The refinement generator is responsible for applying all possible refinements to remedy any misdiagnoses. Rules can be changed by allowing them to fire (called enabling), or preventing them from firing (called disabling). The judgement module selects the best refinement operator or group of operators which result in the best improvement of knowledge-base performance while correcting the misdiagnosed cases. The figure below shows the ARIS architecture

FIGURE 1: ARIS ARCHITECTURE

4. KNOWLEDGE-BASE INDUCTION

In our previous work [arteimi 1999], a prepositional representation was used as our knowledge representation language. Propositional representation use logic formulae consisisting of attribute-value conditions. For example

 (Colour=red (Colour=green) (Shape=Circle

The induced knowledge take the form of production rules that could possess local exceptions to the rule, such as

IF Outlock=Sunny & Humidity=low THEN Class=mild

IF Outlock=rain & Windy=true THEN Class=don’t play

 UNLESS

 Covered-stadium=true.

To construct classification models ARIS is presented with a flat file containing attribute-value descriptions for a set of cases for which the class of each is predefined, and classes are mutually exclusive. Each case is a description of a unique object. ARIS analyses this training data and generates a set of production rules in prepositional form that describes the concepts.

The reasoning process starts by learning a decision tree. The original idea goes back to the work of Quinlan [6] utilizing the idea of divide and conquer. Converting a decision tree into a set of rules has been shown to give interpretable rules and accurate prediction on unseen cases.. Simply writing a tree into a group of rules, one for every leaf in the tree, does not result in much simpler structures since there would be one rule for every leaf. However, by taking a close look at the rule’s antecedent we may recognize that some conditions are irrelevant. Deleting the superfluous conditions results in a generated rule without affecting the accuracy of the original rule, leaving the rule more appealing. To understand the idea behind condition deletion, let rule G be:

IF A THEN class C

Where A is a conjunction of conditions a1,a2,…

[image: image19.wmf]

Rule generator

Rule

base

Tree generator

Training data

Refinement

data

Test data

Classifier

(inference engine)

Refinement

generator

Rule classifier

Refined rule set

 Refined

knowledge base

Refinement module

Architecture

Ordered

rules

Prediction result

And a more general rule G’
IF A’ THEN class C

Where A’ is obtained by deleting one condition ai from the conditions of A.

Each case in the training data that satisfies the shorter antecedent A’ either does or does not belong to the designated class C, and does or does not satisfy condition ai. The number of cases in each group can be organized as follows

	
	Class

C
	Other

classes

	Satisfies conditon ai
	S1
	E1

	Does not satisfy

Condition ai
	S2
	E2

Of the cases satisfying A’ there are S1+E1 cases that satisfy condition ai (in other words satisfy rule G), E1 of them are misclassified by rule G. There are S2+E2 cases covered by the generalized rule G’ but not by the original rule. E2 of them are erroneously included, since they belong to other classes. Since G’ covers all cases that satisfy G as well, the total number of cases covered by G’ is S1+S2+E1+E2. A test of significance on the above table is used to decide whether condition ai should be deleted. The idea is that condition ai is retained only when the actual error rate (E1+E2)/(S1+S2) of G’ is greater than the actual error rate E1/S1 of G.

It is unlikely that a rule that commits an error rate of E/N on the training data [number of errors/ number of cases covered] will have an error as low as E/N on unseen cases; therefore a default error measure which is called the Laplace error estimate of a disjunct is used by Quinlan [6]

[image: image1.wmf]2

1

+

+

=

N

E

error

Default

Where, N is the number of training examples, E of which are from classes other than the designated class C. Therefore a condition ai is retained only when deleting it generates an actual error rate greater than the default error. Of course, more than one condition may be deleted when a rule is generalized. The system carries out a straight forward greedy elimination to remove conditions that produce the lowest actual error rate of the generalized rule.

We have also developed another method for creating rules. This method is guided by a heuristic evaluation function that assesses the quality of a rule by employing two important properties, namely completeness and consistency. The value of the quality function is calculated by:

[image: image2.wmf](1)

)

consiste

(

α

ness

y)complete

consistenc

α

(1

α)

le,

Quality(ru

y

consistenc

ncy

+

+

+

-

=

[image: image3.wmf]examples

covered

#

examples

covered

correctly

#

y(rule)

consistenc

=

[image: image4.wmf]rule

as

class

same

of

examples

of

#

examples

covered

correctly

#

ss(rule)

completene

=

 deleting a condition increases the coverage of the rule, while adding a condition increases the purity of the rule, ARIS learns rules (using this approach) that put greater emphasis on consistency and less on coverage, but this can be changed by altering the value of the variable (. This is a heuristic formula, resulting fom experiments and observations made with the ARIS on real world domains. Making the quality of the rule dependent on consistency is a way of introducing some flexibility, thus coping with different situations (such as rules covering rare cases or very general rules). In our experiments, we set the value of the variable (=0.8 and maximize the quality in Equation (1). Some other combinations of completeness and consistency factors have been suggested. The completeness factor helps to favour rules that cover more cases when consistency is equal as is shown in the example below.

Example:

Foe a data set with 10 cases(5+,5-), if we have two rules:

Rule R1 covers 3 cases, all of them belonging to clas +, and

Rule R2 covers 4 cases, all of them are from class +, then

For Rule R1:

Consistency=3/3=1,

Completeness=3/5=0.6

For Rule R2:

Consistency=4/4=1,

Completeness=4/5=0.8

As you can see, both rules have value 1 for the consistency factor while the completeness factor differs. Therefore it makes sense to add the completeness factor since the consistency factor alone is insufficient.

After all the rules have been learned, ARIS forms an estimate of the weight associated with each rule. The weight is estimated from the entire set of training instances.

5. RULE’S WEIGHT CALCULATION

The weight of a rule is approximated through a combination of the weights of the rule’s attributes. The weight of a rule can be defined as: a measure of confidence in the rule’s opinion, revealing the importance of its conditions to the opinion (hypothesis). This permits us to weight the strength of the rule in an empirical way. Table 1 gives a description of the terminology related to this matter.

We use Bayes’ Theorem to derive the weights of each sub-condition of a rule.

Consider a sample space that is partitioned by events E1,E2,… Let H+, be an event in the space denoting a certain class or a concept with probability of P(H+) >0, then

[image: image5.wmf].

1,2.

i

,

)

i

)P(E

i

E

|

P(H

)

j

)P(E

j

E

|

P(H

)

H

|

j

P(E

=

å

+

+

=

+

For a simple problem, with two conditions and a hypothesis H+ and H-

[image: image6.wmf])

(

)

|

(

)

(

)

|

(

)

(

)

|

(

)

|

(

2

2

1

1

1

1

E

P

E

H

P

E

P

E

H

P

E

P

E

H

P

H

E

P

I

+

+

+

+

+

=

[image: image7.wmf])

(~

)

~

|

(

)

(

)

|

(

)

(

)

|

(

1

1

1

1

1

1

E

P

E

H

P

E

P

E

H

P

E

P

E

H

P

+

+

+

+

=

[image: image8.wmf]

 EMBED Equation.3 [image: image9.wmf])

1

(

)

~

|

(

)

(

)

|

(

)

(

)

|

(

1

1

1

1

1

1

E

P

E

H

P

E

P

E

H

P

E

P

E

H

P

-

+

=

+

+

+

We can define this as Equation 2 below

[image: image10.wmf](2)

)

P(E

QA x

)

H

|

P(E

1

1

=

+

where

[image: image11.wmf]))

(

1

)(

|~

(

)

(

)

|

(

)

|

(

1

1

1

1

1

E

P

E

H

P

E

P

E

H

P

E

H

P

QA

-

+

=

+

+

+

or by using the terminology of Table 1

[image: image12.wmf])

1

(

3

2

3

1

1

x

x

x

x

x

QA

-

+

=

The value of QA lies in [0,+inf]. If we view Equation 2 as an updating formula for the belief in E1 then values of QA greater than 1 tend to increase P(E1) and similarly values less than 1 tend to decrease it.

We can thus view QA as a weight, carried by the evidence E, which sways the belief one way or the other. Positive weight indicates a supporting evidence for the hypothesis, and negative weight indicates opposing evidence against the hypothesis. The following combination function combines the weight of each condition into a single weight for the rule.

[image: image13.wmf]...

)]]

1

(

[

1

[

)

1

(

1

2

1

3

1

2

1

+

-

+

-

+

-

+

=

E

E

E

E

E

E

E

w

w

w

w

w

w

w

w

where w is the rule’s weight. This computes the impact of joint disjunction of the tests in a rule’s antecedent where 0=<wEi<=1. We are interested however in constraining the values of the evidence weight to the interval [-1,+1]. The weight QA calculated as above lies in [0,+inf], therefore the following function is used to map the value to the desired range:

W=F(QA)

[image: image14.wmf]1

QA

1

2QA

F(QA)

where

-

+

=

This will produce a weight value within the range

 [-1,+1]. The weight of a rule is a combination of the weights of its tests . This weight is used as an ordering criterion to order the rules, for aiding classifications, as well as enhancing refinement process.

6. REFINEMENT KNOWLEDGE

The role of the refinement is that it should reduce the number of false positives and false negatives in new cases, while minimising the number of new false positives and false negatives over the currently diagnosed cases. Since there is a relation between consistency and completeness when refining a knowledge base, we define the quality of a knowledge base as:

[image: image15.wmf]y

consistenc

y

consistenc

ss

completene

y

consistenc

KB

Quality

)

(

)

1

(

)

,

(

+

+

+

-

=

a

a

a

where

[image: image16.wmf]cases

all

of

#

cases

covered

correctly

#

=

ss

completene

[image: image17.wmf]

[image: image18.wmf]cases

covered

#

cases

covered

correctly

#

y

consistenc

=

In our experiments we set the value of the variable (=0.8. This provides the desired goal in refinements, which calculates the quality of the knowledge base as a combination of its completeness and consistency.

7. EMPIRICAL RESULTS

The research presented in this paper attempts to find a better way of utilizing information in domains where the available data is large and ever growing, particularly in automated data collection environments

Table 2 is a summary of experiments that show how classification accuracy improves after the refinement operations have been implemented.

The first column in table 2 names the domain used in the experiments. The table is grouped into three groups:

The first group summarises the results before and after refinement for knowledge bases created by the ARIS system using completeness and consistency criteria. The second group contains information before and after refinement on test data for knowledge bases developed using C4.5 system. The third group contains information before and after refinement on test data for knowledge bases created by RIPPER system.

In each group the following information is given:

The column labeled “# rules” indicates the average number of rules in the knowledge base in ten randomly selected experiments for each domain

The column labeled “Acc%” gives the accuracy of prediction of a knowledge base on the particular data set averaged over ten trials.

The tick marks indicate that the refinement resulted in improving the knowledge-base accuracy after performing refinement.

Knowledge-base complexity is another important aspect to analyse. ARIS (just to generate rules using completeness and consistency) and C4.5 create rules from decision tree models induced by analyzing a database of examples, and both systems produce redundant rules. Such superfluous rules are removed during refinement cycle. On the other hand the RIPPER system produces more compact knowledge bases. As a result of new information there is a need for adding rules especially if generalization of existing rules to cover the observed data does not help.

8. COMPARISON OF THREE SYSTEMS

 The goal of this section is to determine when the refinement strategy can produce better results than training a learning system on all the data available.

Our approach in the comparison involves the following strategy:

· Induce a knowledge base by training the learning system with 40% of the available data and then refine it using 20% of the available data,

· Induce a knowledge base by training the learning system using 60% of the available data,

· Compare the performance of the generated knowledge bases by testing both approaches on the remaining 40% of the data

Table 3 is another comparison of three systems, namely ARIS, C4.5, and RIPPER on the selected test domains. The refinement results were compared with knowledge bases induced by incorporating both the training data and refinement data sets as a unified training set. This gives a fair comparison between ARIS,C4.5, and RIPPER. The first column names the domain used. The second column shows the performance of the ARIS system on the test data used when trained on 40% of the available data. Third column gives the performance of the ARIS system on the same test data when trained on the combined training data (i.e. training and refinement data sets together). The fourth column gives the performance of the knowledge base on the test data after refinement. Column five gives the performance of the C4.5 system on the test data when trained on 40% of the available data. Column six shows the performance of C4.5 on the test data when trained on the combined data. Column seven indicates the performance of the refined knowledge base induced by C4.5 system on the same test data. Column eight shows the performance of RIPPER system on the same test data when trained on 40% of the available data. Column nine gives the performance of RIPPER on the test data when trained on the combined data. Column ten gives the performance of the RIPPER’s refined knowledge base on the same test data set.

The tick marks indicate cases where training followed by refinement yielded better results than simply training on all the data.

The experiments display the striking difference in rule induction between C4.5 and RIPPER. Specifically, the C4.5 system generates many rules, some of which have the potential of causing rule contradiction. The ARIS refinement process demonstrated that deleting such superfluous rules often increases knowledge-base accuracy. On the other hand, RIPPER’s approach for inducing rules creates fewer rules. Therefore, during refinement, ARIS performs more rule creations, and few rule deletions occur on the RIPPER knowledge bases.

In summary, refinement mechanism improved concept-description quality for all the algorithms in the three medical domains (i.e. Hepatitis, Hypothyroid, and Heart) characterized by noise and small disjunts problem. Moreover, improvement on several other domains was obtained with C4.5 and ARIS. It is therefore recommended that learning systems use a refinement mechanism on a data set which is separate from the training set used to induce the knowledge base such as that of RIPPER and ARIS to obtain good quality concept descriptions.

9. CONCLUSION

 This paper addresses the problem of creating concept descriptions in large-scale domains, so as to make sense of huge amounts of ever-growing data.

An inductive refinement model has been developed that is capable of creating a knowledge base from a library of pre-classified cases, and continuously updating it to accommodate new facts. This model is of particular importance in regularly changing and noisy domains such as credit-card transactions and medical images.

We have developed a method of learning rule weights based on an estimate of the relationship of rule conditions to a conclusion. The rules are ranked according to their weight to determine the misdiagnosed cases more easily. We have further developed a method for learning rules centered around a misdiagnosed case, which is what we call the “minimum covering algorithm” which helps in determining missing conditions in erroneous rules for specialization, as well as adding new rules to the knowledge base. We have also developed an algorithm for inducing rules from trees utilizing completeness and consistency criteria for rules.

10. REFERENCES

[1] Aha David w., Goldstone Robert L., Concept

 learning and flexible weighting, Proceedings of the Fourteenth Annual Conference of the cognitive Science Society, Bloomington, 1992, pp. 534-539.

[2] Benferhat Salem, Dobois Didier, Prode Heneri,

 Nonmonotonic reasoning, Conditional objects and

 possibility theory. Artificial Intelligence,1997, pp.

 259-276

[3] Breiman Leo, Friedman Jerome, Olshen Richard,

 Stone Charles, Classification and regression trees.

 Wadsworth, Pacific Grove, CA, 1984.

[4] Brunk Clifford. An investigation of knowledge

 intensive approaches to concept learning and theory

 refinement. Ph.D. thesis, University of California,

 1996.

[5] Greiner Russell, The complexity of theory revision,

 Proceedings of the Fourteenth International Joint

 Conference on Artificial Intelligence, Montreal,

 1995.

[6] Quinlan John Ross, C4.5, Programs for machine

 learning, Morgan Kaufman, 1993.

	Symbol
	Description

	Ei
	indicates an event or evidence (eg. Age<=20).

	~Ei
	indicates the complement of Ei (eg. Age>20)

	 H+
	denotes space of positive instances of hypothesis (eg. Healthy)

	H-
	denotes space of negative instances of hypothesis (eg. Sick)

	P(Ei)
	represents the prior distribution of objects(cases) within the scope of the condition relative to the total number of examples covered by the entire population (e.g. P(Age>20)).

	X1 = P(H|Ei)
	Fraction of positive instances of hypothesis covered by the condition Ei (i.e. True positives TP).

	X2 = P(H|~Ei)
	Fraction of positive instances that are not covered by the condition Ei, relative to the complement of Ei (i.e. False negatives FN).

	X3=P(Ei)
	Fraction of all instances covered by the evidence Ei, relative to the entire population.

Table 1: Terminology for condition weighing

	Domain
	ARIS using completeness and consistency
	C4.5 system
	RIPPER system

	
	Before refinement
	After refinement
	Before refinement
	After refinement
	Before refinement
	After refinement

	
	# rules
	Acc %
	Acc %
	# rules
	# rules
	Acc %
	Acc %
	# rules
	# rules
	Acc %
	Acc %
	# rules

	Iris

	2.6
	93.17
	95.67 (
	3
	4.6
	93.5
	93.5
	2.5
	2.6
	90.67
	90.99 (
	3.1

	Wine

	3.1
	87.36
	88.12 (
	4.1
	5.7
	89.72
	89.72
	4.3
	2.8
	86.25
	87.64 (
	3.8

	Hepatitis

	3
	78.55
	79.52 (
	4.5
	5.9
	80.32
	81.61 (
	3.7
	1.3
	77.26
	77.58 (
	3.4

	Hypothyroid

	3.4
	97.89
	98.2 (
	4.5
	7.6
	96.99
	97.67 (
	5.1
	2.5
	98.4
	98.4
	2.6

	Heart

	26.8
	48.93
	49.59 (
	26.2
	38.9
	49.26
	50.66 (
	12.3
	2.9
	52.2
	53.03 (
	9.5

	Flag

	31.2
	56.39
	58.2 (
	15.9
	33
	55.3
	60.24 (
	14.2
	8.6
	52.89
	55.66 (
	13.7

	Audiology

	22.9
	43.04
	49.02 (
	16.1
	23.2
	44.02
	49.6 (
	12.6
	12.8
	66.56
	68.04 (
	12.8

	Mushroom

	22.7
	99.69
	99.85 (
	9.8
	34.3
	98.47
	98.5 (
	13.6
	7.5
	99.84
	99.86
	7.5

	Adult

	160.8
	71.43
	71.44
	57.1
	228
	77.62
	78.61 (
	36.4
	4
	81.27
	81.27
	7.5

	Artificial data

	19.4
	98.09
	98.11 (
	20.3
	47.9
	92.0
	93.6 (
	33.2
	15.6
	96.34
	96.35
	17.9

Table 2: Refinement performance on three inductive learning systems averaged on 10 trials per domain

	Domain
	ARIS using completeness and consistency
	C4.5 system
	RIPPER system

	
	Trained on 40%
	Trained on combined data
	Refined KB
	Trained on 40%
	Trained on combined data
	Refined KB
	Trained on 40%
	Trained on combined data
	Refined KB

	Iris

	93.17
	93.67
	95.67 (
	93.5
	94.0
	93.5
	90.67
	93.33
	90.99

	Wine

	87.36
	89.72
	88.12
	89.72
	90.0
	89.72
	86.25
	90.14
	87.64

	Hepatitis

	78.55
	78.39
	79.52 (
	80.32
	77.96
	81.61 (
	77.26
	76.94
	77.58 (

	Hypothyroid

	97.89
	98.14
	98.2 (
	96.99
	97.24
	97.67 (
	98.4
	98.20
	98.4 (

	Heart

	48.93
	47.05
	49.59 (
	49.26
	50.19
	50.66 (
	52.2
	52.21
	53.03 (

	Flag

	56.39
	59.64
	58.2
	55.3
	55.54
	60.24 (
	52.89
	57.23
	55.66

	Audiology

	43.04
	40.20
	49.02 (
	44.02
	43.12
	49.12 (
	66.56
	70.69
	68.04

	Mushroom

	99.69
	99.77
	99.85 (
	98.47
	98.37
	98.5 (
	99.84
	99.87
	99.86

	Adult

	71.43
	70.97
	71.44 (
	77.62
	78.07
	78.61 (
	81.27
	82.22
	81.27

	Artificial data

	98.09
	98.86
	98.11
	92.0
	98.16
	96.6
	96.34
	97.53
	96.35

Table 3: Comparison of three systems performance

_1112746440.unknown

_1132675355.unknown

_1132675948.unknown

_1132675977.unknown

_1132675634.unknown

_1112747020.unknown

_1112742365.unknown

_1112742795.unknown

_1112743884.unknown

_1112745154.unknown

_1112745246.unknown

_1112745153.unknown

_1112743622.unknown

_1112742608.unknown

_1112742304.unknown

_1112742344.unknown

_1112741701.unknown

_1112294967.unknown

